NPS-EC-95-006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Analyzing VLSI Component Test
Results of a GenRad GR125 Tester

by
D. Zulaica and C.-H. Lee

June 1995

Approved for public release; distribution is unlimited.

Prepared for: Office of Naval Intelligence

19920821 062

Naval Postgraduate School
Monterey, California 93943-5000

Rear Admiral T. A. Mercer ' R. Elster
Superintendent Provost

This report was funded by the Office of Naval Intelligence.
Approved for public release; distribution unlimited.

This report was prepared by:

ﬂ. “"“/Mv_.

D. ZULAICA

Computer Specialist Professor,

Department of Electrical and Department of Electrical and
Computer Engineering Computer Engineering
Reviewed by: Released by:

[V, Mg T XNt
MICHAEL A. MORGAN PAUL J. MARTO
Chairman, Dean of Research

Department of Electrical and
Computer Engineering

ii

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Puoi reporting durgen ‘or thrs cotiection at iIntarmation 1 estiMmated g Jverage | Nour oer rewdanse, INCUGING tNe ttme {Or reviewing INSIructions, searcMing #xisting data sources,
Jathenng and maintdining the data neeged. and cOmoteting 4nd reviewing (he callection ot intarmation. Send comments regarding this Durden estIMate or dny Jther asoect 3t trus
colection of Intormation. inctuding suggestions fOr reducIng the Durden. (0 WashingIon Headquarnens Services, Directarate for :nformatian Qoerations and Reports, 1215 ,efterson
Savis Highway. Suite 1204, Arlingian. VA 222024302, and to the Qftice of Management and Suaget. Saperwarx Reguction Project (0704-0188), washington. 3C 10503.

1. AGENCY USE ONLY (Leave diank) ,f REPQRT DATE 3. REPORT TYPE AND DATES COVERED
une 30, 1995 Interim Report June 1, 1994-June 1, 1995
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Analyzing VLSI Component Test Results of a GenRad GR 125 Tester

5. AUTHOR(S)
D. Zulaica and C.-H. Lee

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 3. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School -

Monterey, CA 93943-5000 NPSEC-95-006

3. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) ~ | 10. SPONSORING / MONITORING

Foreign Materials Branch, ONI-FMB (2333) AGENCY REPORT NUMBER

Office of Naval Intelligence
4251 Sutland Road
Washington, D.C. 20395-5720

11, SUPPLEMENTARY NOTES
The views expressed in this report are those of the authors and do not reflect the

official policy or position of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRALT (Maximum 200 words)
The GenRad GR125 VLSI chip tester provides tools for testing the functionality of entire chips. Test operation

results, such as timing sensitivity or propagation delay, can be compared to published values of other manufacturers’
chips. The tool options allow for many input vector situations to be tested, leaving the possibility that a certain test
result has no meaning. Thus, the test operations are also analyzed for intent. Automating the analysis of test results
can speed up the testing process and prepare results for processing by other tools. The procedure used GR125 test
results of a 7404 Hex Inverter in a sample VHDL performance modeler on a Unix workstation. The VHDL code
is simulated using the Mentor Graphics Corporation’s Idea Station software, but should be portable to any VHDL

simulator.

14, SUBJECT TERMS 15. NUMBER OF PAGES37

VLSI tester, VHDL specification, automatic test equipment, GenRad GR125 tester

16. PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OFf REPORT OF THIS PAGE Of ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
Standard Form 298 (Rev 2-89)
NSN 7540-01-280-5300 "exnoo; oy ANSI Sta. 13918

iii 298-102

Analyzing VLSI Component Test Results Of a GenRad GR125 Testex

Table of Contents

I. Background
II. Objectives
III. Summary
IV. Shmoo Plots
V. Storing Shmoo Plots
A. Saving Shmoo Plots
B. Transferring GenRad GR125 Files to Another Machine
Via a PC
VI. Comparing Propagation Delay
VII. Automation
VIII. Conclusions

IX. References

I. Background

The GenRad GR125 VLSI chip tester provides tools for testing th
functionality of entire chips. Test operation results, such as
timing sensitivity or propagation delay, can be compared to

published values of other manufacturers’ chips. The tool option

11

12

30

32

e

S

allow for many input vector situations to be tested, leaving the

possibility that a certain test result has no meaning. Thus the

test cperations are also analyzed for intent. Automating the
analysis of test results can speed up the testing process and

prepare results for processing by other tools.

The test results from the GR125 can alsc be used in hardware
modelling using a hardware description language such as VHDL. The
automation process should also provide a means to allow VHDL to

input the test results.

II. Objectives

1. Generate shmoo plots.
2. Create VHDL program to read the shmoo plot results.

3. Do Testing verification in VHDL.

IITI. Summary

Following is a procedure to use some GR125 test results of a 7404
Hex Inverter in a sample VHDL performance modeler on a Unix
workstation, Figure 1. The VHDL code was simulated using the
Mentor Graphics Corporation’s Idea Station software, but should

be portable to any VHDL simulator.

U S — | [—

GenRad Computer

VLSI | GR125 with
Component| VLSI VHDL
i Tester Simulator
o - [oae———

Figure 1. Extending GenRad GR125 capabilities.

IV. Shmoo Plots

The GR125 test results can be viewed as one or two dimensional
characterization plots, or shmoo plots, [1] and [2]. Three
variables are available for plotting, time, voltage, and current.
Time provides means of analyzing switching characteristics such
as propagation delay. Voltage and current will show electrical

throughput limitations.

To get meaningful test results in the shmoo plot, an important
parameter is in the Characterization Control-Setup screen. The
pin level axis has a level option, which can have Voltage out low

(Vol) or Voltage out high (Voh) among other values. The other

3

values such as pin level set 2 and pin condition set 2 should

correspond with the appropriate pins being tested.

An example shmoo plot is shown in Figure 2. This example shows
the minimum delay, of a low to high propagation delay test,
occurring for a £74£04 hex inverter. The header portion of the
plot explains that the minimum results are displayed, since the
results from more than one test run can be stored. The GenRad 125
can run several different types of tests during one test run, for
example, a low to high propagation delay test and a high to low
propagation delay test can be run in sequence. The shmoo plot
header states that the test operation number used is number 11,
which was the low to high propagation delay test of the Test

Operation setup screen.

Data points are Minimum Results Page 1
Test Operation Number: 11 Plot Name: f74f04 propagation delay

| 10.0_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
[9.00_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
| 8.00_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
[7.00_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
| 6.00_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
| 5.00_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
| 4.00_v -+ 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
| 3.00_v -+ 13.00n 13.50n 13.00n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n 13.50n
| 2.00_v -+ 13.50n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.50n 13.50n 13.50n
| 1.00_v -+ 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n
1 0.00_v -+ 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n 13.00n
I I I | I [I I I I I I

! 0.00_n 2.00_n 4.00_n 6.00_n 8.00_n 10.0_n 12.0_n 14.0_n 16.0_n 18.0_n 20.0_n

4

| time
+-- pin level

Figure 2. Low to high propagation delay shmoo plot for a f74f04 Hex Inverter.

A listing of test operation number 11, Figure 3, shows that this
test is indeed a propagation timing test. The Timing Array Set

number 2 is used to test the low to high propagation delay.

The data portion of the propagation delay shmoo plot in Figure 2

shows the minimum delay values obtained.
V. Storing Shmoo plots

Shmoo plots are displayed on a text display screen and stored in
binary form in a GR125 output data logged file. When a test is
finished a ~C (control-c) is typed to save the results to the
data logged file and return to the screens menu control. The
shmoo plots can be stored separately from the data logged files
in ASCII format to allow transferring and printing of its
contents. Following are the current procedures to store shmoo

plots and to transfer all files from the GR125 to other machines.

TEST OPERATION 11
AC Functional T-propagation Comment: tplh

5

Pass Range: s < DUT < s

Time Value Set = 1 Search from/at = 12.000 ns
Reference Edge = 1 Search to = 12.000 ns
Search Edge = 2 Resolution = 200.000 ps
Tracking Edge = 8 At Search Time = 30.000 ns
Tracking Edge = At Search Time = S
Tracking Edge = At Search Time = S
Tracking Edge = At Search Time = s

Pin Test Set: 2 Qutputs Only Pin Test Set

Match on PT Set: Compare All at Once

Pin Levels Set: 2 AC levels DO NOT SEARCH

Power Supply Set: 3 5.0 v Linear Search

Timing Array Set: 2 tplh timing

Edge & Format Set: 1 NRZ Format ETO Option = 0x0

Load Relay Set: 1 N/A

Module Name: Timeout After = 3

Start uSeq at 21 Stop uSeqg at Enab Err V Set: 5

Figure 3. High to low propagation delay test operation setup for the £74f04 device.

A. Saving Characterization (Shmoo) Plots

The characterization plot displayed on the test screen can be
saved for reference, later printing, or transferred to another
machine for other possible uses. GenRad includes a program,
pplot, [3], which translates a binary data logged file’s data
into an ASCII file. The ASCII file also includes control

characters for printing to an Okidata 192 printer.

Pplot will create results based on the following information in

the data logged file:

1. Minimum results obtained, or,
2. Maximum results obtained, or,

3. The last vector executed.

An option is also available to display results from a specific

test operation number (-b#).

Pplot options are shown below:

-b# Plot a specific test operation. # can be values from 1
to 100.

-p# Plot one of three possible types:

1 The minimum points of all of the tests.
2 The maximum points of all of the tests.
3 The last vector executed

-d show debugging information

-h show help pages and legend.

v Verbose mode for debugging.
v> show version information.
Examples:

Plot the minimum results obtained from the £74£f04 test log file.
(There will be a prompt to specify the output filename.)

pplot -pl £74f04.1log

Plot the minimum results for test operation number 11.
pplot -pl -bll £74f04.log

Printing:

The new files can be printed on an Okidata printer with the
following command,

lpr -w output-file

B. Transferring GenRad GR125 Files to Another Machine Via a PC

To transfer files from the GenRad GR125 to another machine

perform the following.

1. Turn on the IBM PS/2 machine.
2. Invoke Zstem to log into the Genrad GR125,
zstem /s

Zstem will now emulate a vtl00 terminal through software.
3. Hit the Alt key to get the ZSTEM? prompt so that the
communications protocols will be compatible between the GR125 and
PS/2, 1ie. the baud rate.
4. Set the baud rate with the following command,

baud «r 19200

This sets the PS/2's baud rate at 19200 to match the remote, [r],
GR125’s baud rate.

5. Hit the enter key to return back to the vtl00 terminal.

6. Hit enter again to get the login prompt.
7. Login to the GR125.
8. Note: To get characterization plots in ASCII format read the

Saving Characterization Plots procedure.

5. To copy a file to a PS/2 disk drive run the kermit program,
kermit

10. At the C-Kermit> prompt type in the download command,
send <filename>

11. Hit the Alt key to get the Zstem prompt.

12. Type kermit to run kermit locally to receive the file.

8

13. At the options prompt type R to receive.

14. At the Local file [rmt]? prompt type in the new filename to
reduce the filename to the eleven character DOS maximum.

15. When the download has finished, type F to end the local
Kermit session.

16. Hit enter at the Zstem? prompt to return to the GR125
terminal and the C-Kermit> prompt.

17. When done transferring files type exit to exit the kermit
program.

To transfer files from the PS/2 to the GenRad follow the above

procedure with the following modifications:

1. Replace send in step 10 with receive.
2. Replace R in step 13 with S to send a file.
Symbol parameter Min Nom Max Units
Supply
vece Voltage 4.75 5.0 5.25 v
High
. Level
vih Input 2
Voltage A
Low Level
vil Input v
Voltage 0.8
High
Level
Ioh Output mA

Current -0.4

Low Level
Iol Qutput mA
Current 16

Free Air
Operating 0
Temperatu

re 70

Ta

Table 1: Recommended operating conditions for National
Semiconductor’s DM7404.

Symbol Paramet | Conditi | Min YD Max Units
er ons

Vi Input vcc=Min -1.5 v
Clamp Ii=-
Voltage | 12mA

Voh High Vce=Min | 2.4 3.4 v
Level Ioh=Max
Qutput Vil=Max
Voltage

Vol Low Vecec=Min 0.2 0.4 v
Level Iol=Max
Qutput Vih=Min
Voltage

Ii Input Vcec=Max 1 mA
Current | Vi=5.5V
@Max
Input
Voltage

Iih High Vcc=Max 40 uA
Level Vi=2.4v
Input
Current

Iil Low Vecc=Max -1.6 mA
Level Vi=0.4Vv
Input
Current

Ios Short Vcce=Max | -18 -55 mA
Circuit (Note
Qutput 2)
Current

10

Icch Supply Vcc=Max 6 12 mA
Current
With
Outputs
High

Iccl Supply Vcc=Max 18 33 mA
Current
With
Outputs
Low

Note 1: All typicals are at Vce=5V, Ta=25C.
Note 2: Not more than one output should be shorted at a time.

Table 2: Electrical characteristics for the DM7404, over recommended operating free air temperature
(unless noted).

VI. Comparing Propagation Delay

A f74f04 Hex Inverter is used as one example to compare its low
to high propagation delay with the published values of National
Semiconductor’s DM7404 Hex Inverter. The specifications for
National Semiconductor’s DM7404 device is shown in Tables 1-3,
[4]. A two dimensional shmoo plot comparing high to low
propagation delay with pin voltage level for a £f74£f04 is shown in
Figure 2. Here the propagation delay at the 3 Volt level is
observed in attempting to match the Typical (Typ) High Level
Output Voltage of the DM7404, Table 2. Assuming the correct
interpretation of the results, (see Figure 3 for the operation

test values used), the plot shows

the minimum low to high propagation delay to be 13.0 nanoseconds

(ns). The Typical value shown in Table 3 for the DM7404 is 12 ns.

11

These results imply that the DM7404 has quicker switching

characteristics than the £74f04.

Parameter Conditions Cl=15pF Cl=15pF Cl=15pF
R1=400 R1=400 RI=400 Units
Ohms Min Ohms Typ Ohms Max

tpth Prop. 12 22 ns
Delay Time

Low to High

Level Output

tphl 8 15 ns
Propagation

Delay Time

High to Low

level Output

Note 2: Not more than one output should be shorted at a time.

Table 3: Switching characteristics for the DM7404, at Vcc=5V and Ta=25C.

VII. Automation

The above observations can be automated and allow the results to

be examined using a hardware modelling language, VHDL.

To read the ASCII shmoo plot from a Unix file into VHDL a
package, stdlib, with comparable Unix functions was created,
Figure 4. It currently has two functions; atoint converts the
numeric digits from character to integer values; and atof

converts a character string to a real number. Unix has a similar

12

atof function which is accessed through the stdlib.h header file

in the C language.

Atoint is different from the Unix atoi function in that atoint
only converts one integer character at a time into an integer.
Two constant arrays were created, the string delimsint and the
integer array delimsintval, to hold every integer digit, 0-9, as
a character and integer. The string type is defined to index with
all positive integers. To accommodate functionality with Unix,
which was written using C, a new string type could be defined to

include 0 or the NATURAL range defined in the VHDL std library.

Atoint is mainly a loop comparing the input character to all of
the values in the delimsint array. If a match is found the
integer type representation of that character integer is
returned. The boolean variable ierror is used to stop the
simulation if no integer digit is found. Changing ierror to false
if a numeric character is found may not be needed, but was used
for possible modification of the function and readability. Atoint
can also be written to return a -1 if a non-numeric character is
found, which is the standard error reporting procedure in the C

language and Unix.

Atof takes an ASCII string with a maximum of 20 characters and
converts it into a real value. This VHDL atof is similar to the

Unix function strtod in that the string length is also required.

13

The Unix atof function calls strtod. Atof consists of five parts

run in sequential order, as outlined below,

[. Get the integral part of the string (L.LOOP_I)
A. Check if the character is a numeric digit
B. Stop checking if the dot, *.’, is found
II. If an integral part is found convert to real
A. Get multiplication factor for first digit (LOOP_II)
B. Multiply each digit by its 10’s factor (LOOP_III),
ie. for ‘432", (4 x 100) + 3 x 10) + (2 x 1) = 432 should result.
1L Increment the string astrng to pass over the ‘." character
IV. Process the fraction part of the string if it exists (LOOP_IV)
C. If a numeric digit is found multiply by its fractional 10’s factor (LOOP_IV_A)
B. Error check to reveal if the string is corrupted

V. Return the final real value

In the VHDL code loops are labelled in outline fashion for

readability.

package stdlib is

_ 3Rosksk ok ok ok sk ok sk sk ok ok ok ok sk ok ok ok sk sk sk ok sk sk ok ok ok sk sk sk ok sk sk ok sk ok sk s sk Sk ok ok K s sk sk kosk ok ok skok skok sk ok sk okok

constant MASL.: integer := 20; -- maximum ASCII string length

14

constant NDI : integer := 10; -- delimiter string length
type delim_int_vect is array (1 to 10) of integer; -- an integer vector
constant delimsint: string (1 to NDI) := "1234567890";

constant delimsintval: delim_int_vect := (1, 2, 3,4, 5,6, 7, 8,9, 0);

-- Function atoint converts a single ASCII character digit to its integer value.

-- Input: asc is a character variable which should be from 0 to 9. Any other

-- ASCII character results in an error.

FUNCTION atoint (constant asc : in character) return integer;

Function atof is similar to the standard unix atof function, returning a

floating point value from an ASCII input string.

Input: astrng is an ASCII string representing a floating point number, ie.
"XXXX.XXXX " The spaces are * * characters.

ASL is the astrng string length.

Not implemented: 1. Negative sign is not processed; an error will result.
2. A fraction must always start with a ‘0.” instead of just “.".

3. Scientific notation is not supported.

FUNCTION atof (constant astrng : in string (1 to MASL);
constant ASL : in integer) RETURN real;

end stdlib;

15

SRRk ok K koK ok koK K K K K oK oK ok ok ok ok o ok ok K 3K oK oK ok sk ok oK oK K oK K K oK ok o ok ok ok oK K ok K o o oK ok o oK ok o oK ok ok ok ok oK 3k kR sk oK K oK ok

_sokosk sk ok ok o ok ok ok sk ok ok s sk sk ok ok ok sk sk ke sk R ok oK oK ok sk ok ok sk sk sk ok ok ok sk ok sk ok ok oK sk o ok ok ok ok sk sk s ok ok sk sk ok ok ok sk sk ok ok ok 3k ok Ko Kk

PACKAGE BODY stdlib IS

o 3RR oK Rk R ok ok ok K kK sk oK K sk Sk sk SR K R K K kR sk ok K sk sk R K R koK kKR SRR Kok ki RRoROR Kok SRokoskokk ok sk sk sk sk ok skoskok sk kok ok sk sk kok sk

function atoint (constant asc : in character) return integer is

variable ierror: boolean := true; -- Should change to false if integer found
begin
LOOP_I: for iin 1 to NDI loop
if asc = delimsint(i) then -- match the ASCII value and

lerror := false;
return delirnsintval(i); -- return the integer representation
end if;
end loop LOOP_I;

assert ierror = false
report "Error: The ASCII value was not an integer 0-9, (in stdlib.atoint)"

severity error;

end atoint;

function atof (constant astrng : in string(1 to MASL);

constant ASL : in integer) return real is

16

variable intgrl : integer := 0;

variable dot : boolean := false;

variable counter : integer := 0;

variable mult : real := 0.0;
fractional

variable ansr : real := 0.0;

variable intg: integer;,

variable tdigit: boolean;

begin
assert ASL <= MASL

-- length of integer part of number
-- TRUE if a ‘.’ is found
-- keep track of decimal point

-- 10’s multiplier for each digit, including

-- return the real number, ansr
-- returned atoint() integer value

-- flagged true if a fractional digit was found

report "Error: ASCII string length greater than maximum allowed"

severity error;

LOOP_I: for n in 1 to ASL loop

LOOP_I_A: for i in 1 to NDI loop

if astrng(n) = delimsint(i) then -- Is astrng(n) a numeric ,0-9, character?

intgrl := intgrl + 1;
exit LOOP_I_A;

end if;
end loop LOOP_L_A;

if astrng(n) = ‘.’ then

dot := true;
exit LOOP_I;
end if;

end loop LOOP_I,

if intgrl > O then

-- process the integral part

LOOP_II: for n in 1 to intgrl loop -- multiplication factor for first digit

17

if n =1 then
mult := 1.0;
else
mult := mult * 10.0;
end if;
end loop LOOP_II;

LOOP_III: for n in 1 to intgrl loop
intg := atoint(astrng(n));
ansr := ansr + (real (intg) * mult);
mult := mult / 10.0;
end loop LOOP_III;
end if;

if dot = true then
intgrl := intgrl + 1; -- increment to process the fraction part of astrng to

end if; -- the right of the *.’

if intgrl < ASL then -- no fraction part found
LOOP_IV: for n in intgrl + 1 to ASL loop
tdigit := false; -- TRUE if astrng(n) is an integer digit

LOOP_IV_A: for i in 1 to NDI loop
if astrng(n) = delimsint(i) then
tdigit := true;
intg := atoint(astrng(n));

ansr := ansr + (real (intg) * mult);

mult := mult / 10.0; -- keep track of the fractional placement
exit LOOP_IV_A;
end if;

end loop LOOP_IV_A;

18

if tdigit = false then
if astrng(n) = * * then
exit LOOP_IV;
else
assert astrng(n) = * *
report "Error: invalid ASCII string; must not be a floating point
number (in stdlib.atof)"
severity error,
end if;
end if;
end loop LOOP_IV;
end if;
return ansr;
end atof;

END stdlib;

Figure 4. Stdlib package duplicating standard Unix functions documented in Stdlib.h.

The VHDL entity getdelay reads the ASCII shmoo plot file by
parsing it and extracting the pertinent information for
comparison. For this example the minimum propagation delay value
is extracted at the 3 volt level. A generic, vlevel, is used to
specify the voltage level. A generic, cdelay, is also used to
specify the typical delay for the DM7404. These values could also
be written to a simple input file which than can be read by

getdelay. The result is the difference between the DM7404 and the

19

£f74f04 written to an output file, result. Here the answer is -1.0C
showing that the £74f04 is slower than the DM7404 reference

value.

An outline of the getdelay process follows,

I. Read and process each line in the header section (LOOP_I)
A. Parse the current line read (LOOP_IA)
1. Find a delimiter for word separation (LOOP_IA1)
2. Check for end of file (a manually inserted character here)

3. If a non-delimiter is found get the word (LOOP_IA2)

II. Leave a NOTE that the data section will be processed, (for debugging purposes)
MI. Read and process each line in the data section (LOOP_II)
A. Parse the current line read (LOOP_IA)
1. Find an integer digit (LOOP_IIA1)
2. If an integer digit is found get the real number (LOOP_IIA2)
a. Check for end of file
b. Find an integer digit (LOOP_IIAZ2a)
c. Real number read into string ‘strng’
1. Add spaces to the rest of ‘strng’
2. check for unit of measure

3. Convert ‘strng’ to a ‘real’ type, (call atof)

20

4. If the line is at the correct voltage level get the minimum delay
value

IV. Get the propagation delay differences and write the

answer to a file

LOOP_I processes the header information of the shmoo plot. The
Plot Name, see Figure 2, can contain only the device under test
name to be extracted and used in the output file. To check for an
end of file a ‘'@’ was entered at the end of the shmoo plot file.
Since the shmoo plot file was created automatically by a software
program its format should not change and here an end of file

should not be expected. ‘'@’ was used for debugging purposes.

The shmoo plot format allowed for an easy check to find the data
section. In Figure 2 the first ‘|‘' is seen at the beginning of
the top line of data. This also meant that a different parsing

algorithm could be used to find the data values.

The VHDL TEXTIO package has a function for reading real values.
However, the shmoo plot file contains non-numeric characters in
the data lines. This could be fixed by first filtering each line,
but the unit of measure (UOM) for each value is also used. Rather
than keep track of the UOM for each data value LOOP_II finds the
value and checks for its UOM right away. The parsing was
accomplished by using the ten numeric digits and '.’ as

delimiters rather than loop through all possible characters,

21

including control characters.

-- getdelay.vhd

entity getdelay is

GENERIC (constant vlevel : in real := 3.0; -- the voltage level to compare
constant rvalue : in real := 12.0; -- reference delay value
constant ND : in integer := 12; -- number of delimiter characters

constant NDI : in integer := 11; -- number of delimiter characters during

-- integer read

constant WS : in integer := 128; -- length of word

constant WIS : in integer := 10; -- length of word integer

constant SL : in integer := 256); -- length of READ string, strng

end getdelay;

library unix;
use unix.stdlib.all;

use std.textio.all;

architecture proc of getdelay is

file infile : text is in "cpfile.plt";
file outfile : text is out "result";
signal zout: character := ‘0’;

-- signal delimflag: boolean := false;
signal words: string (1 to WS);

-- test signal
-- testing TRUE if a delimiter was found

-- test word as a signal

22

signal wordsint: string (1 to WIS); -- wordint as a signal, maybe out port

signal fltval: real; -- wordint translated to real, check signal
signal volts: real := 0.0; -- test signal, shows voltage used

signal mindels: real := 10000.0; -- test signal, should show min delay value for
voltage

begin

proc_I : process

variable line_ptr : line;

variable resline : line;

variable strng: string (1 TO SL); -- characterization plots have up to 132 columns

-- plus control characters

variable j: integer; -- index of strng

variable noeol: boolean; -- end of line flag

variable noeof: boolean := true; -- end of file flag, should only change once
variable delimflag: boolean; -- TRUE if a delimiter was found

variable delimflagint: boolean; -- FALSE if an integer delimiter was found
variable word: string (1 to WS); -- The current word to process

variable wordint: string (1 to WIS); -- The current integer to process as int

variable wi: integer := 0; -- index of word, initially at 1

variable wl: integer; -- length of word

variable bmtrue: boolean := false; -- true if "I-" found

variable mptrue: boolean := false; -- true if "-+" found

constant delims: string (1 to ND) := " ;=I-A[" & If & cr & nul & ht & esc;

constant delimsint: string (1 to NDI) := "0123456789" & "."; -- couldn’t compile with
only

-- one string

variable volt: boolean; -- TRUE if voltage axis is found

variable delay: boolean; -- TRUE if a delay value is found

variable word2flt: real; -- wordint translate to floating point

23

variable getdel: boolean := false; -- get the delay value if TRUE, for 5V values only
variable mindel: real := 10000.0; -- initial minimum delay in nanoseconds
variable answer: real; -- answer to the difference between reference value and read

delay

begin
-- Read and process each line in the header section of the plot file
LOOP_I: WHILE noeof loop -- noeof will be FALSE if time axis has been
read
READLINE (infile, line_ptr); -- no provisions for EOF?
wait for I ns;
noeol := true;

j=1

-- LOOP_IA - process file header information
-- Process each character in the current line
LOOP_IA: WHILE noeol loop -- noeol is FALSE if end of line reached
wi = 0;
j=)+ 1
READ (line_ptr, strng(j), noeol);
zout <= strng(j);
wait for 1 ns;

delimflag := false;

LOOP_IAL: FORiIN 1 to ND loop -- find a delimiter
wait for 1 ns;

if strng(j) = delims(i) then

if strng(j) = ‘I’ then
exit LOOP_I;

24

end if;

delimflag := true;
exit LOOP_IAL;
end if;
end loop LOOP_IAL;

if zout = ‘@’ then -- end of file indicator
noeof := false;

end if;

LOOP_IA2: WHILE delimflag = false loop

wi = wi+ 1; -- write to next character of word
word(wi) := strng(j); -- character added to word
j=j+ 1 -- read the next character from the line

READ (line_ptr, strng(j), noeol);

if zout = ‘@’ then -- end of file indicator
noeof := false;

end if;

zout <= strng(j);

wait for 1 ns;

LOOP_IA2a: FOR i IN 1 to ND loop -- find a delimiter
wait for 1 ns;
if strng(j) = delims(i) then
delimflag := true,

wl := wi; -- last increment of word index is word length

25

LOOP_IA2al: for k in wi+1 to WS loop

word(k) = *
end loop LOOP_IA2al;

words <= word,
exit LOOP_IAZ2a;
end if;
end loop LOOP_IA2a;
end loop LOOP_IAZ2;
end loop LOOP_IA;
end loop LOOP_]I;

assert NOT (strng(j) = ‘")
report "At the beginning of the delay data

"

severity note;

-- Read and process each line in the data section of the plot file

LOOP_HI: WHILE noeof loop -- noeof will be FALSE if time axis has been

read

READLINE (infile, line_ptr); -- no provisions for EOF?

wait for 1 ns;
noeol := true;

j=1

-- LOOP_IIA - process the delay information

-- Process each character in the current line

LOOP_ITA: WHILE noeol loop -- noeol is FALSE if end of line reached

wi = 0;

26

=i+ L
READ (line_ptr, strng(j), noeol);
zout <= strng(j);

wait for 1 ns;

delimflagint := false;
LOOP_IIAl: FOR i IN 1 to NDI loop -- find an integer delimiter

wait for 1 ns;

if strng(j) = delimsint(i) then
delimflagint := true;

exit LOOP_IIAI,;

else
if strng(j) = ‘@’ then -- end of file indicator
noeof := false;
end if;
end if;

end loop LOOP_IIAL,

LOOP_ITA2: WHILE delimflagint = true loop -- get the integer from the file

wi:=wi+l; -- write to next character of wordint
wordint(wi) := strng(j); -- character added to wordint
j=j+1 -- read the next character from the line

READ (line_ptr, strng(j), noeol);

if zout = ‘@’ then -- end of file indicator
noeof := false;
end if;

zout <= strng(j);

wait for 1 ns;

27

delimflagint := false;
LOOP_IIA2a: FOR i IN I to NDI loop -- find an integer delimiter
wait for 1 ns;
if strng(j) = delimsint(i) then
delimflagint := true;
end if;
end loop LOOP_IIA2a;

if delimflagint = false then -- finished getting a number

wl = wi; -- last increment of wordint index is word length
if wi /= WIS then -- should never be greater than WIS
LOOP_IIA2b: for k in wi+1 to WIS loop
wordint(k) ;= “
end loop LOOP_IIA2b;
end if;
volt := false;
delay := false;
if strng(j) = ‘_’ then -- find out if number is axis or delay value
j=j+ L -- the input file format is already established

READ (line_ptr, strng(j), noeol);
if strng(j) = ‘v’ then

volt := true;
end if;
elsif strng(j) = ‘n’ then
delay := true;
end if;

word2flt := atof(wordint, WIS);

28

flitval <= word2flt;

if volt = true then
if word2flt = vlevel then
getdel := true;
volts <= word?2flt;
else
getdel := false;
end if;
end if;

if getdel = true then
if delay = true then
if word2flt < mindel then
mindel := word2flt;
mindels <= word2flt;
end if;
end if;
end if;

end if;
end loop LOOP_IIA2;
end loop LOOP_IIA;
end loop LOOP_II;

answer := rvalue - mindel;
write (resline, answer);

writeline (outfile, resline);

wait;

29

-- test signal, should show vlevel

-- find the min value

end process proc_I;

end proc;

Figure 5. VHDL source code to read a shmoo plot and extract the minimum voltage.

VIII. Conclusions

The example of checking the propagation delay of a device to that
of a reference device through a VHDL program is a first step in
the automation process. New programs can be written to test
different characteristics of a device. This provides the
opportunity to standardize programming techniques as in-house
templates similar to standard programming language syntax. Some
code could be easily recognizable to new and fellow programmers.

Programming productivity should also increase.

An example 1s provided in the proc architecture of getdelay,
(Appendix C). There are two main parsing loops, LOOP_I reads the
header information and LOOP_II gets the voltage level and delay

values. A template may look like the following,

-- Read and process each line in a file
LOOP_I: WHILE noeof loop -- noeof will be FALSE if time axis has been
read
READLINE (infile, line_ptr);

wait for 1 ns;

30

noeol := true;

=1

-- LOOP_IA

-- Process each character in the current line

LOOP_IA: WHILE noeol loop -- noeol is FALSE if end of line reached
wi = 0;
j=j+ 1
READ (line_ptr, strng(j), noeol);

end loop LOOP_IA;
end loop LOOP_I;

Another example is a simple template which has all of the steps

to read data from a file,

file <file-pointer-name> : text is in "<filename>";

variable <line-pointer-name> : line;

READLINE (<file-pointer-name>, <line-pointer-name>);

READ (<line-pointer-name>, <variable-name>, <boolean-type>);

Ultimately a database can be developed which can be accessed from
VHDL as well as C/C++, Figure 6. In the internet a parts database
protocol may be developed to allow potential buyers to review

parts specifications at either no cost or preview cost.

31

VLSI i
Component

|
AR
. . N
CAD/CAE Standard
VLSI Testing Component
Computers Computer Specifications
Database
Group Network \\Advertlse
i Interested
| computers /
| y
[Inquire
The Internet
Figure 6. Internet-wide database.
IX. References

GenRad Component Test Systems,
Inc., Concord, MA, 1990.
Loeblein, James T., "A Digital
With Test Vector Translation, "
Monterey, CA, 1992.
GenRad, "GR115/125/130 Version

Inc., Concord, MA, 1989,

32

"GR125 User’s Guide," GenRad,

Hardware Test System Analysis

Naval Postgraduate School,

2.1 Release Notes," GenRad,

4. National Semiconductor Corporation, "Logic Databook, Volume
II," National Semiconductor Corporation, Santa Clara, CA,

1984.

5. Mentor Graphics Corp., "Design Architect User’s Manual, "
Mentor Graphics Corp., Wilsonville, OR, 1994.

6. Mentor Graphics Corp., "Mentor Graphics VHDL Reference

Manual, " Mentor Graphics Corp., Wilsonville, OR, 1994.

7. Mentor Graphics Corp., "Quicksim II User’s Manual," Mentor
Graphics Corp., Wilsonville, OR, 1994.

8. Plauger, P.J., "The Standard C Library," Prentice Hall, Inc.,

Englewood Cliffs, NJ, 1992.

33

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station

Alexandria, VA 22304-6145

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor C.-H. Lee, Code EC/Le
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5121

Dan Zulaica, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

34

No. Copies

